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Abstract. In many different topics, the most significant digits of data series display a non-uniform distri-
bution which points to an equiprobability of logarithms. This surprising ubiquitous property, known as
the significant digit law, is shown here to follow from two similar, albeit different, scale symmetries: the
scale-invariance and the scale-ratio invariance. After having legitimized these symmetries in the present
context, the corresponding symmetric distributions are determined by implementing a covariance criterion.
The logarithmic distribution is identified as the only distribution satisfying both symmetries. Attraction of
other distributions to this most symmetric distribution by dilation, stretching and merging is investigated
and clarified. The natures of both the scale-invariance and the scale-ratio invariance are further analyzed by
determining the structure of the sets composed by the corresponding symmetric distributions. Altogether,
these results provide new insights into the meaning and the role of scale symmetries in statistics.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 07.05.Kf Data analysis: algorithms
and implementation; data management – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion

1 Introduction

More than a century ago, the astronomer Simon Newcomb
noticed a peculiar statistical feature in the distributions
of many numerical data sets [1]:

The law of probability of the occurrence of numbers
is such that all mantissae of their logarithms are equally
likely.

A consequence of this statistical property is that the
probability P (s) of occurrence of the first significant digit
s in many common data sets is actually non-uniform: in
contrast with basic intuition, the smaller digits (e.g. [1])
appear more frequently than the larger digits (e.g. [9]) (see
Tab. 1). Moreover, this non-uniform occurrence follows a
definite distribution whose shape is logarithmic (Fig. 1a).
This is known as the “significant-digit law”, hereafter la-
belled “SDL”. In the decimal system, it reads [1–3]:

P (s) = log10(1 + s−1). (1)

An amazing empirical support to this logarithmic distri-
bution was put forward by S. Newcomb who noticed that
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the first pages of logarithmic tables are more soiled — and
therefore more visited — than the last pages [1]! Later on,
Franck Benford, a physicist of the General Electric Com-
pany, provided a strong quantitative support to this law
by analysing more than twenty data sets referring to top-
ics as different as areas of rivers, front pages of newspa-
pers, base-ball statistics, street addresses in human groups
. . . [2] (see Tab. 2 and Fig. 1b).

To emphasize the wide domain of validity of this law
and its large universality, we have reported in Figure 2a
the histograms of the most significant digits of the mea-
surements reported in the articles of a previous issue of
this journal [4]. We have complemented it in Figure 2b
by the histograms of the most significant digits of the
first page of the articles to which they refer. These data,
of course, refer to very different topics and, within each,
to mostly uncorrelated features. Their normalized his-
tograms are however close to the SDL for each issue of
the journal and get even closer to it when gathered in a
common data set.

Nowadays, the significant-digit law is used in computer
design for saving memory [5,6], in tax control as a mean
for detecting frauds [7], in mathematical modeling and
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Fig. 1. Significant digit law (SDL) and Bendford’s evidences. (a) Probability of occurrence of the most significant digit in com-
mon data sets according to the SDL (Tab. 1) (1). (b) Normalized histograms of the most significant digit of data corresponding
to areas of rivers, numbers displayed on front pages of newspapers, base-ball statistics, street addresses in human groups . . . [2]
(Tab. 2).

Table 1. Probability of occurrence of the most significant digit according to the SDL (1)

digit 1 2 3 4 5 6 7 8 9

probability 0.301 0.176 0.125 0.097 0.080 0.067 0.058 0.0518 0.046

Table 2. Some of the distributions of most significant digits obtained by Franck Bendford on topics as different as areas of rivers,
numbers displayed on front pages of newspapers, base-ball statistics, street addresses in human groups . . . [2]. Probabilities are
given in percents.

Digit 1 2 3 4 5 6 7 8 9 Sample

River’s areas 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335

Newpapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100

Base-ball 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1458

Street addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342

in finance [10]. Yet, its origin and its significance still
remain the subject of mathematical [3,11–13] and sta-
tistical [14,15] investigations. The latter studies [14,15]
have aimed at pointing out the statistical processes or the
stochastic systems that can give rise to the significant-
digit law; the former studies [3,11–13] have looked at iden-
tifying the statistical properties that are necessary for ex-
hibiting this peculiar law. Among them, those based on
the concepts of scale-invariance [3,11] seem both the most
promising and the most amenable to extension to other
fields.

However, two pitfalls may be encountered when apply-
ing scale symmetries in statistics: the possible breaking of
a probability measure depending on the set on which dis-
tributions are considered (Sect. 3.1.1 and App. A.5); the
variation of the normalization constants of distributions in
comparing the effects of scale change on them (App. A.1).
To avoid them, we shall work with conditional probabili-
ties defined on bounded intervals (Sect. 3.1.2). This frame-

work, different from those used in previous studies [3,11],
will yield us to draw different conclusions on this topic.

The present paper aims at showing how the properties
of scale invariance and of scale-ratio invariance, when ap-
plied altogether on sets involving a non-degenerate prob-
ability measure, succeed in selecting a universal attractor
distribution: the significant digit law.

For this, we begin in Section 2 by justifying the rel-
evance of these statistical invariances to large enough or
various enough data sets. In Section 3, we implement from
these symmetries the frequency distribution of data on
bounded, strictly positive, semi-closed intervals. Two dif-
ferent classes of distributions referring either to scale in-
variance or to scale-ratio invariance are found. Interest-
ingly, the significant digit law is recognized in Section 4
as their common distribution. Its attraction on distribu-
tions by dilation, stretch and merge is then investigated
and clarified.
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(a) (b)

Fig. 2. Example of the SDL and of the convergence by merging to the SDL. Data are taken from the Vol. 22 of Eur. Phys.
J. B [4]. They are collected in four sets corresponding to the numbers ni = 1, 2, 3, 4 of this volume and finally gathered in a
common data set. The normalized histograms of the most significant digit of these different data sets are then compared to the
SDL. Each set ni = 1, 2, 3, 4 follows the general trend of the SDL. However, their common data set gets even closer to it: the
more data, the closer to the SDL in average. (a) Data correspond to the measurements reported in articles. (b) Data correspond
to the first page of the cited articles.

This selection of a universal attractor distribution by
symmetries indicates that the present statistical problem
is appropriate for investigating the nature of scale symme-
tries and for providing an insight into their interplay. To
this goal, we address in Section 5 from a general viewpoint
the concepts of characteristic scale and of characteristic
scale-ratios for distributions and we determine, for each
symmetry, the structure of the corresponding sets of sym-
metric distributions.

A conclusion about the significance of the link between
the significant digit law and the scale/scale-ratio symme-
tries is finally given in Section 6.

2 Scale invariance; scale-ratio invariance

2.1 Significant digit law and symmetries

Whereas Newcomb’s law may be satisfied on some data
sets, it largely fails when data are correlated with some
deterministic feature. This is the case for instance for tele-
phone numbers since some of their digits correspond to
the domestic/abroad calling direction, the state or the re-
gion. Another example is given by personal identification
numbers since a part of them refers to the sex number,
the birth year or the birth place. There, digits are set by
definite features that privilege some numbers, even up to
forbidding some others. Clearly, the logarithmic distribu-
tion cannot hold in these instances.

Conversely, for data sets satisfying Newcomb’s law, the
above remark calls for questioning the existence of any
noticeable feature in their distribution. The guess that
there is none is supported by the following considerations:

1. Uncorrelation of events
The data sets that are known to satisfy Newcomb’s
law refer to events which seem to be uncorrelated. Ex-
amples include the share volumes on stock exchange
of various products [7], the income tax from many dif-
ferent companies and products [7,8], the stock mar-
ket indexes [9], the numbers printed on front pages

of newspapers [2,12,17], the street address among a
large group of scientists [2], the radioactive half-lives
of many different elements [18] . . . Here, uncorrelation
of events supports the absence of characteristic fea-
tures in the corresponding data files.

2. Convergence by merging
Merging together data sets not satisfying Newcomb’s
law yields a distribution closer to Newcomb’s law than
the initial ones [10] (Fig. 2). Here, merging implies two
important features for the new data file: the increase
of the number of data; the gathering of the features
brought about by each data set. Increase of data num-
ber indeed enhances the convergence of normalized his-
tograms to a limit distribution. However, by itself, this
cannot be taken as responsible for an evolution of the
limit distribution. On the other hand, merging differ-
ent features into a common data set makes each of
them less discernible in the average: the resulting file
then actually better approaches a feature-free data se-
ries.

3. Convergence by stretching
When a data file does not initially follow Newcomb’s
law, raising it to higher and higher powers makes it ap-
proach a logarithmic distribution [13] (Figs. 5 and 6).
As raising data to powers stretches their distribution,
a possibility is that any characteristic feature gets so
“diluted” among the file that it is finally “wiped out”.

4. Stability by homothety
When a data file initially follows Newcomb’s law, any
of its homothetic files still satisfies a logarithmic distri-
bution. In the same spirit, we notice that, if data series
involve no specific intrinsic features, so do any homo-
thetic series. The robustness of both these properties
to homothety shows the compatibility of Newcomb’s
law with the absence of intrinsic feature in data series.

5. Universality
The universal character of the significant digit law in-
dicates that it refers to a widely shared property. Ac-
cordingly, one may expect that this property is rather
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linked to the absence of specificities rather than to the
existence of some definite one.

Following the above considerations, Newcomb’s law may
be expected to rely on deep symmetries. Good candidates
are those symmetries which are related to the concept of
scale. We consider two of them below: scale-invariance and
scale-ratio invariance.

2.2 Scale invariance

2.2.1 Relevance

A paramount concept in the study of phenomena is that
of “magnitude”. It is usually referred to as the concept
of “scale” since it actually reduces to it in a geometrical
context.

When a definite magnitude is singled out by the pro-
cess or by the state under study, the corresponding scale
is definitely particularized within the resulting data se-
ries, even in a statistical framework. It then stands as one
of their characteristic features. However, following Sec-
tion 2.1, one may guess that, although the concept of
characteristic scale is relevant to most of usual data se-
ries, it may be incompatible with some. To better realize
this property, let us address the implications of dilation
and merge to the present issue and question the nature of
the limit distribution.

We first notice that, given a phenomenon exhibiting a
magnitude l, the particular scale that it drives in data se-
ries is the number nl = l/ls equal to the ratio of the magni-
tude l to the magnitude ls of the standard used to measure
it. However, different observers using different standards ls
would conclude to different characteristic scales nl for the
data series representative of the phenomenon. In particu-
lar, observers using homothetic standards would conclude
to homothetic series involving homothetic characteristic
scales. Then, comparing these series would give the same
impression as if the standard ls had been kept fixed but
the characteristic magnitudes l had been dilated. Merging
such data series would thus result in scattering charac-
teristic scales among data: merging dilated files tends to
destroy the concept of characteristic scale.

Pushing this property at the limit, we may obtain,
by successive change of phenomena or of standard units
and by merging, a file containing no characteristic scale
nl. This property implies that the resulting data refer to
a set of phenomena altogether showing no characteristic
magnitude l, so that all standards ls are thus equivalent
regarding their measurements. Stated differently, whereas
changing a standard ls for another l′s actually induces a
dilation of data, i.e. a scale dilation, this nevertheless must
not change the statistical representation of the file: there
must be statistical scale-invariance.

2.2.2 Statistical equivalence; scale covariance

In the above analysis, merging is considered to play a role
similar as that of thermalization in statistical mechan-
ics. However, in the same way as thermalization does not

mean uniform distribution in phase space, scale-invariance
is not synonymous of uniform probability. In particular,
the shapes of scale-invariant distributions may be identi-
fied from the symmetry which underlies scale-invariance:
the invariance by dilation of their representation.

Let us call Dλ the dilation by scale factor λ:

Dλ(.) : x → λx = Dλ(x). (2)

Scale invariance states that dilating all scales by the
same factor λ keeps the statistical representation un-
changed. This means that homothetic data files are statis-
tically equivalent so that their distributions are the same.
In other words, scale dilation fails in changing the dis-
tribution functions: they are scale-covariant by dilation
Dλ. Reciprocally, any distribution satisfying this prop-
erty would not allow, by itself, any distinction between
scales to be made. It could therefore only refer to data files
exhibiting no characteristic scale, i.e. to scale-invariance.
Statistical scale-invariance is thus equivalent to covariance
of distributions by scale dilation.

The major interest of covariance by dilation is to pro-
vide us with a definite operational criterion for identifying
the analytic form of scale-invariant distributions. This cri-
terion will be implemented in Section 3.2.

2.3 Scale-ratio invariance

2.3.1 Relevance

Whereas the significant digit law is expected to satisfy
scale-invariance, we have no certainty that the converse
is true: some scale-invariant distributions may not sat-
isfy Newcomb’s law. If that was the case, Newcomb’s law
might refer to more symmetries than just scale-invariance.
Anticipating on this possibility, our problematic consists
in determining the possible candidates for such additional
symmetries and in identifying the shape of their distribu-
tions.

Having adopted scale-invariance as a fundamental
symmetry underlying Newcomb’s law, an important
constraint restricts the range of possible additional sym-
metries involved in this law: their compatibility with scale-
invariance. Equivalently, this turns out forbidding the gen-
eration of any characteristic scale by the transformations
linked to additional symmetries. On the opposite indeed,
applying these symmetries to scale-invariant files satisfy-
ing Newcomb’s law would generate files still satisfying this
law while involving some characteristic scales, in contra-
diction with our basic assumption.

We thus forbid the generation of any characteristic
scale by the transformations linked to the sought addi-
tional symmetries. As these transformations are single
variate functions, they can therefore only be power laws
Sxf ,ν :

Sxf ,ν(.) : ∀x , x → xf

(
x

xf

)ν

= Sxf ,ν(x). (3)

Here ν parametrizes the stretch induced by the transfor-
mation whereas xf denotes its non-zero fixed point.
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Fig. 3. Sketch of the effect of a stretching transformation Sxf ,ν(x) = xf (x/xf )ν on an elementary pattern (a) of a Koch curve.
Stretching is applied in (b) from each of the extremities O to the symmetry axis, on both the mother branch (the horizontal
line) and the daughter branch (the broken line). Taking xf = 1, the bifurcation of the daughter branch from the mother branch
still occurs at a distance unity from O. Taking ν = 2, half the length of the mother branch (resp. the daughter branch) grows
up to (3/2)2 = 9/4 (resp. 22 = 4). The scale ratio between the mother branch and the daughter branch then increases from
ρ = 2/(3/2) = 4/3 to ρ′ = 4/(9/4) = 36/9 = ρ2.

The nature of the scale-symmetry linked to the trans-
formations (3) follows from the fundamental property of
power laws: power laws Sxf ,ν change scale ratios :

Sxf ,ν(.) : ∀(l1, l2), ρ =
l2
l1

→ ρ′ =
Sxf ,ν(l2)
Sxf ,ν(l1)

=
(

l2
l1

)ν

=ρν .

(4)
Especially, symmetry of distributions with respect to these
transformations means that statistics do not make dif-
ference between scale ratios. This property stands as the
analogous, for scale ratios, of the concept of scale invari-
ance for scale: it corresponds to a scale-ratio invariance.

To illustrate the nature of this scale symmetry, con-
sider the statistical properties of deterministic fractals
built on a given scale ratio. An example of this is given by
a Koch curve (Fig. 3a). There, the ratio ρ = 4/3 between
the sizes of the similar branches generated at consecutive
scales stands for a definite scale ratio on which the whole
geometry of the object relies. In many instances, one may
guess that this scale ratio ρ plays an essential role in the
statistical behaviour of the system. Then, changing ρ by
applying a stretching transformation Sxf ,ν on branches
would yield still a fractal object (Fig. 3b), but with def-
initely different properties: there would be no scale-ratio
invariance. However, it may happen that some property
does not depend on the scale-ratio ρ. This would be the
case for instance for a property only relying on the number
of small scale objects generated on a branch at each new
scale generation (e.g. 4 for a Koch curve). Then chang-
ing ρ for another scale-ratio ρ′ would have no implication
on that particular property, so that scale-ratio invariance
would be valid in this instance.

2.3.2 Statistical equivalence; scale covariance

As for scale invariance, selection of distributions satisfy-
ing this symmetry may be achieved by requiring covari-
ance with respect to the scale transformations Sxf ,ν . This

derivation is performed in Section 3.3 below. An impor-
tant difference between the two kinds of covariance how-
ever stands in the existence of two kinds of parameters
in the scale transformations Sxf ,ν instead of one in the
dilations Dλ. In particular, whereas the parameter ν is
relevant to the change of scale ratio (4), the parameter xf

is not. Regarding scale-ratio invariance, xf thus stands as
a free parameter which can be chosen as desired.

This degree of freedom means that scale-ratio invari-
ance is satisfied provided that, given a definite ν, there
exists one parameter xf such that the power law Sxf ,ν

does not modify the statistical representation. Then distri-
bution functions are such that they may keep unchanged
despite the change of scale ratios: they are scale-ratio co-
variant.

It is worth noticing that these covariant distribution
functions are invariant by change of scale ratios only for
a judicious choice of parameter xf : xf ≡ xf (ν). This
makes an explicit difference here between covariance and
invariance which contrasts with the previous case of scale-
invariance where the two concepts could be confused one
into the other.

2.4 Previous analyses of scale symmetries
for distributions

Before addressing the determinations of the covariant dis-
tributions, it is worth reporting the previous analyses that
have relied on scale symmetries in this topic. In particu-
lar, it will be instructive for the sequel to highlight their
differences with the present study.

The first mathematical investigation of a possible im-
plication of scale invariance in the SDL dates back to
H.Pinckham [11]. Working on the digit distribution and
assuming its invariance by dilation, he derived the SDL
from a functional relationship that was solved by using
the properties of the unit circle mappings. This led him to
the conclusion that the only scale-invariant digit distribu-
tion is the SDL, in contrast with the derivation that will
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be reported in Section 3.2. The precise reasons for this
disagreement are pointed out in Appendix A.1.

The most comprehensive study of the link between
scale symmetries and the SDL has been undergone by
T. Hill who investigated the implications of both scale-
invariance and base-invariance [3]. The latter symmetry is
defined as an invariance by change of base of numerota-
tion, i.e. x = abn, n ∈ Z, a ∈ [1, b[→ x′ = ab′n, n ∈ Z.
The essential differences of the analyses of Hill with that
reported hereafter are the following:

– The change of base corresponds to a discontinuous
transformation in contrasts with the stretching trans-
formation Sxf ,ν . In particular, base change leaves a
gap of values in between x′ = bb′n and x′ = b′n+1.

– Base-invariance corresponds to a stretching transfor-
mation Sa,ν(.) with a fixed ν = ln(b′)/ln(b) but a pa-
rameter a that depends on the point x that is consid-
ered. This implies that scale ratios ρ = x2/x1 change,
but in a way that depends on scales: ρ = x2/x1 → ρ′ =
x′

2/x′
1 = ρν (a2/a1)1−ν where x1 = a1b

n, x2 = a2b
m,

ν = ln(b′)/ ln(b) and where a2/a1 exhibits the scale de-
pendence. As the change of scale-ratios is not uniform
with respect to scales, base-invariance cannot then be
considered as a scale-ratio invariance.

– The scale symmetries considered in [3] address the dis-
tribution of the most significant digits of data belong-
ing to unbounded sets: the Borel sets B = ∪[x1b

n, x2b
n[

where n ∈ Z and (x1, x2) ∈ [1, b[. These sets actu-
ally correspond to those positive numbers that have
their most significant part in base b in between x1 and
x2. However, the fact that they extend from 0 to ∞
whereas the probability density function π(x) ∝ 1/x
(41) that underlines the SDL is not normalizable on the
set [0,∞[ (

∫ b

a πdx = ±∞ for a = 0 or b = ∞) questions
the relevance of an unbounded data set for dealing with
probabilities in this problem (see App. A.5). In partic-
ular, as the normalization factors of distributions may
diverge in the limit of infinite or vanishing data (as it
does for the sought SDL) unbounded data sets forbid
dealing with probability density functions, for instance
when considering the effect of dilations. As shown in
Appendix A.1, this actually prevents selecting other
scale-invariant distributions than the SDL.

– Another difference stands in the nature of the
symmetries that are considered. Base-invariance is a
symmetry of the representation of numbers, whereas
scale-ratio covariance is a symmetry of data them-
selves, irrespective of their kind of representation. The
latter property will enable us to easily transpose this
symmetry of data into a symmetry of system.

– The last major difference stands in the concept of
scale symmetry: Hill uses it as a property of invariance
whereas we shall use it as a property of covariance. In
particular, the fact that the concept of base-invariance
involves only one parameter (i.e. parameter b above)
makes its covariance actually reduces to an invariance.
By comparison, the fact that scale-ratio invariance in-
volves two parameters (xf , ν) in the present context

makes covariance and invariance two definitely differ-
ent concepts.

Following these differences, it will be no surprise that op-
posite conclusions will be reached regarding both the na-
ture of symmetric distributions and their link to the SDL.
In particular, whereas Hill concludes that scale-invariance
solely selects the SDL and implies base invariance, we
shall show that scale-invariance and scale-ratio invariance
are two distinct symmetries, separately satisfied by many
other distributions than the SDL, but sharing a single
common distribution: the SDL (Sect. 5).

Recently, multiplicative process [14] and stochastic
systems [15] have been proposed for supporting the
widespread occurrence of the SDL. In particular, simu-
lations of both the evolution of a flat distribution submit-
ted to a multiplicative noise [14] and of dynamical sys-
tems [15] have revealed an attraction towards the SDL. In
comparison, we shall not be interested here in a particular
stochastic phenomenon compatible with the SDL but in
determining the deep structures of this law that all the
phenomena which support it have to meet.

3 The symmetric distributions

We derive in this section the distributions satisfying either
scale-invariance or scale-ratio invariance. For this, we first
define below a relevant framework and then focus atten-
tion on both symmetries.

3.1 Probability on semi-closed intervals

3.1.1 Motivations

Although Newcomb’s law deals with numerical sets whose
bounds are not prescribed, it would be unwise to search for
deriving this distribution on the unbounded set � made by
the real numbers. The reason for this is that unbounded
sets may not be probabilizable, in the sense that normal-
ized histograms may not converge to a normalizable dis-
tribution in the limit of a large number of data.

An example of this is given by the chance of picking
up a given positive integer q at random within the infinite
set N made by the positive integers. Here, the term “at
random” means that, whatever it is, the chance of picking
up an integer is the same for all integers. Accordingly, if
this chance corresponds to a probability p(q), this proba-
bility can only be a constant C: ∀q; p(q) = C. However,
no value of C is compatible with the normalization con-
straint

∑
p(q) = 1 for q ∈ N : this stochastic process is

not probabilizable!
This pitfall, which is responsible for many paradoxes

in probability theory [19], stresses the fact that normal-
ized histograms of integers picked up on the infinite set
N actually do not converge in the limit of a large number
of data. The reason for this is that, whatever the num-
ber q picked up, there always be infinitely more chance to
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pick-up the next numbers r above q (r ∈ [q,∞]) than be-
low (r ∈ [0, q[). However, this argument would no longer
be relevant if the picked-up integers were confined to a
compact sub-set of N , e.g. [0, N ] ∩ N . Then normalized
histograms would actually converge to a normalizable dis-
tribution, e.g. ∀q ∈ [0, N ] ∩ N , p(q) = 1/N .

To avoid a possible breaking of the concept of prob-
ability (see App. A.5), we therefore consider hereafter a
semi-closed interval [a, b[ bounded by unprescribed real
numbers a, b. We then introduce the probability p that
a data belonging to the interval [a, b[ belongs also to the
sub-interval [xi, xj [∈ [a, b[: p ≡ p(xi, xj | a, b). Our ba-
sic assumption will be that such probability exists, even
if it may not be extended to the infinite limits a → −∞,
b → ∞ or to some definite bound (e.g. a = 0), as exem-
plified above by the probability of picking-up numbers.

3.1.2 Conditional probability

By definition, probability p(xi, xj | a, b) is the probability
that data x belongs to [xi, xj [, once it is granted that it
belongs to [a, b[. It is therefore a conditional probability.

Transitivity implies:

∀[xi, xj [ ⊂ [a, b[ ⊂ [c, d[
p(xi, xj | a, b) ∗ p(a, b | c, d) = p(xi, xj | c, d)

so that

∀(xi, xj) ∈ [a, b[2 , p(xi, xj | a, b) =
f(xi, xj)
f(a, b)

(5)

with f(xi, xj) = p(xi, xj | c, d) for fixed values c, d.
Notice that changing c or d only changes the function

f(., .) by a constant prefactor. As this has no implication
on the probability p(., . | a, b), we shall omit noticing the
parameters c, d in the following.

3.1.3 Additivity

Consider the intervals [xi, xj [ and [xj , xk[. As they are dis-
joint intervals with a union equal to the interval [xi, xk[,
they yield an additive property for the corresponding
probabilities:

∀(xi, xj , xk) ∈ [a, b[3 ,

p(xi, xk | a, b) = p(xi, xj | a, b) + p(xj , xk | a, b)

This, together with relation (5), yields additivity of func-
tion f(., .):

∀(xi, xj , xk) , f(xi, xk) = f(xi, xj) + f(xj , xk) (6)

Fixing xk and introducing g(x) = f(x, xk), we obtain:

∀(xi, xj) , f(xi, xj) = g(xj) − g(xi) (7)

and, from relation (5):

p(xi, xj | a, b) =
g(xj) − g(xi)
g(b) − g(a)

. (8)

Here too, as changing xk only changes function g(.) by
a constant with no implication on the probability p(., . |
a, b), we shall omit noticing it in the following.

Our problem now reduces to determining the functions
g(.) relevant to scale-invariance or to scale-ratio invari-
ance, up to an irrelevant constant and an irrelevant pref-
actor.

3.2 Scale invariance

The property of statistical scale-invariance implies the co-
variance of normalized distributions by arbitrary scale di-
lation Dλ. Here, scale dilation mimics a change of scale
units, so that it must apply to all scale measurements.
These include not only the bounds xi, xj of the sub-
interval in which data are sought, but also the bounds
a, b of the interval in which they are assumed to lie.

Covariance then yields the following criterion for scale-
invariant distribution:

∀λ , ∀(xi, xj , a, b),
p(Dλ(xj), Dλ(xi) | Dλ(a), Dλ(b)) = p(xj , xi | a, b)

that we rewrite in the following formal condensed form:

∀λ , p ◦ Dλ = p. (9)

Criterion (9) states that a scale-invariant distribution p is
compatible with any dilation of variables. Thus, observ-
ing such distribution cannot give any information on the
scale units with which the variables have been measured.
From this ambiguity follows the statistical equivalence of
all units regarding this distribution.

From relation (8), criterion (9) yields a constraint on
function g(.):

∀λ , ∀(xi, xj , a, b) ,

g(λxj) − g(λxi)
g(λb) − g(λa)

=
g(xj) − g(xi)
g(b) − g(a)

. (10)

This implies that the following expressions only depend
on λ via functions labelled h(.) and k(.):

∀λ, ∃h(.), ∃k(.),

∀(xi, xj),
g(λxj) − g(λxi)
g(xj) − g(xi)

= h(λ)

∀x, g(λx) = h(λ) g(x) + k(λ). (11)

The general derivation of the solutions of criterion (11) is
reported in Appendix A.6. It only assumes the existence of
a distribution p, not everywhere discontinuous. However,
for the sake of simplicity of the derivation, we assume
below that p is differentiable with respect to xi, xj or,
equivalently, that g(x) is differentiable with respect to x.
This assumption will be found not to restrict the set of
solutions.

Differentiation of criterion (11) with respect to x gives:

∀λ �= 0, ∀x, g′(λx) = l(λ) g′(x) (12)
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where l(λ) = h(λ)/λ and where primes denote differenti-
ation with respect to x at fixed λ.

Differentiation of relation (12) with respect to λ gives:

∀λ �= 0, ∀x, x g′′(λx) = l̇(λ) g′(x) (13)

where dots denote differentiation with respect to λ at
fixed x.

Combining relations (12) and (13) gives the following
constant expressions:

∀λ �= 0, ∀y = λx,
y g′′(y)
g′(y)

=
λ l̇(λ)
l(λ)

= e − 1 (14)

where e is a constant.
Integrating (14) yields two cases:

– e �= 0
g(x) = α xe + β (15)

– e = 0
g(x) = α ln(|x|) + β (16)

where (α, β) are constants. They correspond to the follow-
ing scale-invariant distributions:

– e �= 0

pe(xi, xj | a, b) =
xe

j − xe
i

be − ae
(17)

– e = 0

p0(xi, xj | a, b) =
ln(|xj |) − ln(|xi|)
ln(|b|) − ln(|a|) . (18)

Notice that, beyond the formal split at e = 0, the space
of solutions is continuous in the sense that p0 is simply
the limit of pe for e → 0. In addition, the relevance of the
restriction to a bounded range of data [a, b[ is emphasized
by the divergence or the vanishing of distributions (17, 18)
in the limit of zero or infinite a, b, xi or xj (see App. A.5).

3.3 Scale-ratio invariance

The property of scale-ratio invariance implies the covari-
ance of normalized distributions by arbitrary change of
scale-ratios:

ρ → ρν . (19)

It is worth stressing here that scale-ratio changes (19) are
only parametrized by ν so that a given scale-ratio trans-
formation (4) is driven by any power law transformations
Sxf ,ν(.) involving the desired value of ν:

Sxf ,ν(.) : x → xf

(
x

xf

)ν

. (20)

Therefore, the requirement of scale-ratio covariance asks
that, for any ν, the invariance by at least one power law
change of variables Sxf ,ν(.) is satisfied for at least one xf .
Here too, variable change must apply to all scale measure-
ments, i.e. to xi, xj , a and b.

We thus obtain the following formal criterion for scale-
ratio invariant distribution:

∀ν, ∃xf ; ∀(xi, xj , a, b) ,

p(Sxf ,ν(xj), Sxf ,ν(xi) | Sxf ,ν(a), Sxf ,ν(b))
= p(xj , xi | a, b)

that we rewrite in the following formal condensed form:

∀ν , ∃xf ; p ◦ Sxf ,ν = p. (21)

Criterion (21) means that a scale-ratio invariant distribu-
tion p is compatible with any change of scale ratio ρ → ρν .
Thus, observing such distribution cannot give any infor-
mation on the status of scale-ratio measurements and,
therefore, any relevance to their values. From this am-
biguity follows the statistical equivalence of scale ratios
regarding this kind of distributions.

Changing variable x for its logarithm X = ln(|x|),
we notice that transformation Sxf ,ν(.) corresponds to an
affine transformation AM,ν of variable X :

Sxf ,ν(.) : X = ln(|x|) → νX + M = AM,ν(X) (22)

with:
M = (1 − ν) ln(|xf |) (23)

with xf possibly dependent on ν at this stage.
Let us label P (., . | ., .) and G(.) the expression of

functions p(., . | ., .) and g(.) in logarithmic variables X =
ln(|x|):

P ◦ ln = p; G ◦ ln = g. (24)

The equivalent covariant criterion for P writes:

∀ν , ∃M ; P ◦ AM,ν = P. (25)

In a way similar as in Section 3.2, this yields from rela-
tion (8) a constraint on function G(.):

∀ν, ∃M(.); ∃H(.), ∃K(.) ;
G(νX+M(ν))=H(ν) G(X)+K(ν). (26)

The only difference with criterion (11) is the additional
degree of freedom M(.). General derivation for well defined
distribution p, not everywhere discontinuous, is reported
to Appendix A.7. However, for the sake of simplicity, we
assume below that P is differentiable with respect to both
Xi = ln(|xi|), Xj = ln(|xj |) or, equivalently, that G(X) is
differentiable with respect to X . This will be found not to
restrict the set of solutions.

Differentiation of criterion (26) with respect to X
gives:

∀ν �= 0, ∀X, G′(νX + M) = L(ν) G′(X) (27)

where L(ν) = H(ν)/ν and where primes denote differen-
tiation with respect to X at fixed ν.

Differentiation of relation (27) with respect to ν gives:

∀ν �= 0, ∀X, (X + Ṁ) G′′(νX + M) = L̇(ν) G′(X) (28)
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where dots denote differentiation with respect to ν at
fixed X .

Combining relations (27) and (28), we obtain:

∀ν �= 0, ∀Y = νX + M,
G′′(Y )
G′(Y )

=
R

Y − N
(29)

where R(ν) = νL̇(ν)/L(ν) and N(ν) = M(ν) − νṀ(ν).
The fact that function P (., . | ., .), and thus function

G(.), does not explicitly depend on parameter ν implies
that both R and N are constant. In particular, the lat-
ter property means that M(ν) is affine: M(ν) = m + nν
where m and n are constants. Relation (23) then implies
M(1) = 0, n = −m and ln(|xf |) = m, so that xf is
independent of ν. This means that all the fixed points of
the power law transformations ensuring covariance are the
same. From now on, we shall label xc their common value:
∀ν, xf (ν) = xc.

Integration of (29) at fixed ν provides two cases which,
back to variable x and function g(.), read:

– f �= 0
g(x) = α (ln(|x/xf |)f + β (30)

– f = 0
g(x) = α ln(| ln(|x/xf |)|) + β. (31)

Here f, α, β, xf are independent of Y as a result of the
integration and of the definition (3). They are also inde-
pendent of ν since neither function g(.) nor function G(.)
depend on this parameter. They are therefore actual con-
stants.

Relations (30, 31) correspond to the following family
of scale-ratio invariant distributions:

– f �= 0

pf,xc(xi, xj | a, b) =
[ln(|xj/xc|)]f − [ln(|xi/xc|)]f
[ln(|b/xc|)]f − [ln(|a/xc|)]f

(32)
– f = 0

p0,xc(xi, xj | a, b) =
ln[| ln(|xj/xc|)|]−ln[| ln(|xi/xc|)|]
ln[| ln(|b/xc|)|]− ln[| ln(|a/xc|)|] .

(33)

Notice that, beyond the formal split at e = 0, the space of
solutions is continuous in the sense that p0,xc is simply the
limit of pf,xc for f → 0. Notice also that no distribution
of the kind of (32, 33) could exist in a set extending to in-
finity, i.e. b = ∞, or including 0, e.g. a = 0 (see App. A.5).
Here too, this stresses the relevance of the restriction to a
bounded range of data [a, b[.

The value xc stands as a characteristic scale of the dis-
tributions (32, 33). The fact that it also corresponds to the
common value of the fixed points xf (ν) of the covariant
transformations Sxf ,ν(.) means that distributions (32, 33)
are covariant by the stretching transformations:

Sxc,ν(x) = xc(x/xc)ν (34)

as can be checked straightforwardly.

4 The significant digit law

In Section 2, the analysis of the context in which the SDL
appears led us to conjecture that it could refer to the
most symmetric distributions regarding scales. The iden-
tification in Section 3 of the distributions that are scale-
invariant or scale-ratio invariant now enables us to check
this conjecture directly.

We show below that the SDL actually corresponds to
the distribution common to the set of scale-invariant dis-
tributions and to the set of scale-ratio invariant distribu-
tions. We then investigate the attractor properties of this
specific distribution by dilation, stretch and merge.

4.1 The SDL: nature and symmetries

4.1.1 Distribution of the most significant digit

The distribution of the most significant digit of data ex-
pressed in a given base simply follows from the conditional
probability of data occurrence considered in previous sec-
tions. For instance, for a data set ranging from 10−N to
10N and expressed in the decimal base, the distribution
P (s | 10−N , 10N) of the most significant digit s, 1 ≤ s ≤ 9,
is obtained by summing the different probabilities of find-
ing a data in the ranges [s10n, (s+1)10n[, 1 ≤ n ≤ N −1:

P (s | 10−N , 10N) =
N−1∑

n=−N

p (s10n, (s + 1)10n | 10n, 10n+1)

∗ p (10n, 10n+1 | 10−N , 10N).
(35)

Notice that the relationship (35) could be easily gener-
alized to any other base b by replacing the argument 10
by b.

4.1.2 Continuous SDL

The significant digit law (1) expressed by Newcomb ac-
tually addressed the distribution of the first significant
digit in the decimal base. It has been extended to the first
two significant digits by Newcomb [1] and then to the n
first digits (d1, d2, . . . , dn) ∈ {1, . . . , 9}n by Hill [3]. This
yielded the generalized n-digit SDL:

Pn(σn) =
ln(σn + 10−n) − ln(σn)

ln(10) − ln(1)
(36)

where σn = [d1+10−1d2+. . .+10−ndn] and where Pn(σn)
denotes the probability of occurrence of the most signifi-
cant part σn of data mantissae.

The n-digit SDL (36) is a discrete distribution law.
However, in the limit of infinite n, it yields a continu-
ous distribution that may be named continuous significant
digit law (CSDL):

∀(x, y) ∈ [1, 10[2 , P (x, y) =
ln(y) − ln(x)
ln(10) − ln(1)

(37)
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where P (x, y) expresses the probability of occurrence of
mantissa σ in between x and y, 1 ≤ x < 10, 1 ≤ y < 10.
Of course, the CSDL contains the SDL as a restriction to
x = s, y = s + 1 and s ∈ {1, . . . , 9}.

The stability of the SDL with respect to data stretch-
ing [13] as well as direct investigation [3] shows that the
base of the numerotation b is of no importance with
regards to the SDL. This yields us to generalize the
CSDL as:

∀(x, y) ∈ [1, b[2 , ∀b > 0 , P (x, y, b) =
ln(y) − ln(x)
ln(b) − ln(1)

.

(38)
Notice finally hat, for data belonging to a given range
[b−N1 , bN2[, the connection between the CSDL and condi-
tional probabilities simply follows from the relationship:

∀(x, y) ∈ [1, b[2, ∀b > 0

P (x, y, b | b−N1, bN2) =
N2−1∑

n=−N1

p(xbn, ybn | bn, bn+1)

∗ p(bn, bn+1 | b−N1, bN2). (39)

4.1.3 Equivalence between Continuous SDL and logarithmic
distribution

Assuming that the CSDL is valid in any range, we can
apply (38) in the two ranges [b−N1 , bN2[ and [b−N1, bN2−1[.
We obtain the following independence with respect to data
ranges:

∀(x, y) ∈ [1, b[2 , ∀b > 0

P (x, y, b | b−N1, bN2) = P (x, y, b | b−N1, bN2−1)
= P (x, y, b).

On the other hand, separating in relation (39) the term
n = N2 − 1 of the summation from the others, we obtain:

∀(x, y) ∈ [1, 10[2 , ∀b > 0, ∀(N1, N2)

P (x, y, b | b−N1 , bN2) =

P (x, y, b | b−N1 , bN2−1) ∗ p(b−N1 , bN2−1 | b−N1 , bN2)

+p(xbN2−1, ybN2−1 | bN2−1, bN2)∗p(bN2−1, bN2 | b−N1 , bN2)

and finally:

∀(x, y) ∈ [1, 10[2 , ∀b > 0, ∀(N1, N2)

p(xbN2−1, ybN2−1 | bN2−1, bN2) = P (x, y, b)

=
ln(y) − ln(x)
ln(b) − ln(1)

.

As b and N2 are arbitrary, this corresponds to the loga-
rithmic distribution (18) with xi ≡ xbN2−1, xj ≡ ybN2−1,
a ≡ bN2−1 and b ≡ bN2.

Conversely, assume that the logarithmic distribution is
valid in any ranges. Then relation (39) straightforwardly
yields the CSDL (38). The continuous significant digit law
(38) is thus equivalent to the logarithmic distribution (18).

4.1.4 Scale invariance and scale-ratio invariance:
logarithmic distribution and SDL

Comparing relations (17, 18, 32, 33) shows that there ex-
ists a single distribution satisfying both scale-invariance
and scale-ratio invariance: the logarithmic distribution:

p0(xi, xj | a, b) = p1,xc(xi, xj | a, b)

=
ln(|xj |) − ln(|xi|)
ln(|b|) − ln(|a|) .

This, together with the above results, shows that there
is equivalence between the couple of symmetries of scale-
invariance plus scale-ratio invariance, the logarithmic dis-
tribution and the SDL. In particular, in contrast with
some analyses [3,11], scale-invariance only is not sufficient
to select the SDL: scale-ratio invariance is required too.

Notice that the present selection of the SDL relies on
symmetries of data distribution. A selection of the SDL
from the symmetries of digit distribution is reported in
Appendix A.1. It also shows that both the scale invari-
ance and the scale-ratio invariance are needed to recover
the SDL.

4.1.5 Probability density functions

Although the data sets to which the present study is ded-
icated are finite, it will be useful to interpret the form
of conditional probabilities p(xi, xj | a, b) in terms of
probability density functions. Assuming a continuous data
distribution, we thus introduce the probability density
function (p.d.f.) π(x | a, b) derived from the conditional
probability p(xi, xj | a, b) as:

π(x | a, b) =
dp

dε
(x, x + ε | a, b) (40)

In particular, the p.d.f. of the SDL, noticed πs, reads:

πs(x | a, b) =
1

ln(b) − ln(a)
1
x

. (41)

It thus corresponds the following property:

d

dx
[xπ(x | a, b)] = 0. (42)

This provides a simple criterion for identifying it.

4.2 Attraction towards the SDL

Being symmetric, the SDL is a fixed point of the scale
transformations changing the scales (i.e. the dilations (2))
or the scale-ratios (i.e. the power law transformations (3)).
In this context, a relevant question emerges as to whether
iterating these transformations on other distributions
makes them approach or escape the vicinity of the only
invariant distribution, the SDL. This amounts to deter-
mining whether the SDL is an attractor or a repulsor in
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the distribution space for dilations or for stretching trans-
formations.

Two different points of view may be taken for con-
sidering the new distribution resulting from dilation or
stretch. Their difference refers as to whether one analy-
ses the whole new data set or only its intersection with
a fixed bounded observation window. This turns out con-
sidering whether data sampling occurs before or after the
iterations of dilation or stretch. The first case corresponds
to an observer that changes iteratively the data he has
sampled once: he then works on a fixed data set that is
latter changed. The second case corresponds to an ob-
server which samples in a given range a phenomenon that
is iteratively distorted by dilations or stretches: he then
works with the varying parts of the initial data set that
fits within his observation window.

We shall refer to these different cases as to “fixed
data set” and “fixed observation window”. Their main
difference refers to the origin of the attraction: the intrin-
sic mixing property of transformations in the first case
(Sect. 4.2.2); the form of the p.d.f. of the initial data set
in the latter case (Sect. 4.2.1).

4.2.1 Fixed observation window

Data are changed by dilations or stretch but observed in
a fixed bounded observation window [a, b[, 0 ≤ a, b < ∞.

Dilation

Consider a distribution p(xi, xj | a, b) and apply a dilation
of data: x → Dλ(x) = λx. One obtains a dilated distribu-
tion Dλ[p](xi, xj | a, b) which is related to the initial one
by:

Dλ[p](Dλ(xi), Dλ(xj) | Dλ(a), Dλ(b)) = p(xi, xj | a, b)
(43)

or:

Dλ[p](xi, xj | a, b)=p(D−1
λ (xi),D−1

λ (xj) |D−1
λ (a), D−1

λ (b)).
(44)

Iterating this, one obtains:

Dλ[p]n(xi, xj | a, b) = p(D−n
λ (xi),

D−n
λ (xj) | D−n

λ (a), D−n
λ (b))

= p(xiλ
−n, xjλ

−n | aλ−n, bλ−n).

In particular, as function Dλ(.) is dilating, i.e. λ > 1,
iterating it backwards makes the data that belong to the
bounded range [a, b[ uniformly converge to zero: D−n

λ → 0
for n → ∞. This implies that the distribution function
Dλ[p]n is determined by the asymptotic expression of the
pdf π(. | ., .) of the probability p in the vicinity of 0.

In particular, if π(x | ., .) ≈ x−1 in the vicinity of 0, the
dilated distribution Dλ[p]n converges towards the SDL for
n → ∞:

Dλ[p]n(xi, xj | a, b) →n→∞
∫ xjλ−n

xiλ−n

π(x | aλ−n, bλ−n)dx

→n→∞
ln(xj) − ln(xi)
ln(b) − ln(a)

.

More generally, the way π(x | a, b) tends to 0 with x, a
and b, determines the limit expression of Dλ[p]n. In par-
ticular, if π(x | a, b) ≈ xe−1 in the vicinity of 0, the dilated
distribution Dλ[p]n converges to:

Dλ[p]n(xi, xj | a, b) →n→∞
xe

j − xe
i

be − ae
(45)

i.e. to a scale-invariant distribution that is not invariant
by scale ratio changes.

Dilating data thus turns out performing a zoom of the
distribution around 0, so that the infinitely dilated distri-
bution behaves as the starting distribution does around
0. Accordingly, the basin of attraction of distributions for
iterated dilations is determined by the shape of these dis-
tributions for vanishingly small data.

Stretch

Consider a distribution p(xi, xj | a, b) and apply a power
law stretch of data (3). One then obtains a stretched distri-
bution Sxf ,ν [p](xi, xj | a, b) which is related to the initial
one by:

Sxf ,ν [p](Sxf ,ν(xi), Sxf ,ν(xj) | Sxf ,ν(a), Sxf ,ν(b))
= p(xi, xj | a, b).

Iterating this, one obtains:

Sn
xf ,ν [p](xi, xj | a, b)

= p[S−n
xf ,ν(xi), S−n

xf ,ν(xj) | S−n
xf ,ν(a), S−n

xf ,ν(b)].

However, as function Sxf ,ν(.) is stretching, ν > 1, m =
1/ν < 1, iterating it backwards makes data converge ex-
ponentially slowly towards its fixed point xf :

S−n
xf ,ν(x) = xf |x/xf |mn

= xf exp[mn ln(|x/xf |)]
→ xf for n → ∞. (46)

This implies that the distribution function Sn
xf ,ν [p] is

determined by the asymptotic expression of the p.d.f.
π(. | ., .) of the probability p in the vicinity of xf .

In particular, for π(x | a, b) ≈ α(x − xf )f−1 in the
vicinity of xf and the asymptotic trend (46), we obtain,
for n → ∞:

Sn
xf ,ν [p](xi, xj | a, b) →n→∞

× [S−n
xf ,ν(xj) − xf ]f − [S−n

xf ,ν(xi) − xf ]f

[S−n
xf ,ν(b) − xf ]f − [S−n

xf ,ν(a) − xf ]f

→n→∞
[ln(|xj/xf |)]f − [ln(|xi/xf |)]f
[ln(|b/xf |)]f − [ln(|a/xf |)]f .

The iterated stretched distribution thus converges towards
a SRI distribution (32). For f �= 1, this distribution is
not invariant by scale dilation; for f = 1, it is, since it
corresponds to the SDL.

The infinitely stretched distribution thus behaves as
the starting distribution does around the fixed point xf of
the transformation. Accordingly, the basin of attraction of
distributions for iterated stretching is determined by the
shape of these distributions around xf .
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(a) (b)

(c)

Fig. 4. Sketch of the effects of iterated dilations on distributions. Data correspond to: (a) the measurements reported in the
Vol. 22 of Eur. Phys. J. B [4]. (b) the index of the first page of the cited articles in this volume. (c) the integer series: 1 ≤ i ≤ 1024.

4.2.2 Fixed data set

Here, data set is changed by dilations or stretch and then
analysed as a whole.

We draw attention below on the distribution of the
mantissa σ of data d in base b: σ = db−n, σ ∈ [a, b[. As the
SDL corresponds to an equiprobability of the logarithms
of mantissae, i.e. to a uniform distribution of log(σ) =
log d ≡ log b, it may be viewed as the expression of the
equiprobability of the log-data when mapped on the unit
circle: d → θ = 2π log(d)/ log b.

Following this property, we find it convenient to con-
sider the distribution of log-data, θ = 2π log(d)/ log b, on
the unit circle to better address the effect of dilations or
stretch on data statistics.

Dilation

A dilation Dλ of data corresponds to a uniform translation
log d → log d+log λ of log-data. It has then no implication
on the level of uniformity of the distribution of log-data on
the unit circle. Dilation thus does not change the overall
proximity of the distribution of a data set to the SDL.

Stretch

A stretch Sxf ,ν of data corresponds to an affine trans-
formation log d → ν log d + log xf of log-data. Whereas
translation has no implication on the level of uniformity

of the distribution, dilation yields mixing when iterated
on the unit circle. This implies that iterative stretching
of data yields convergence towards a uniform distribution
on the log-circle, i.e. to a data set whose distribution ever
more approaches the SDL.

4.2.3 Distance to the SDL

The effects of iterated dilations and stretches are shown in
Figures 4–6 on three data sets: the measurements reported
in the volume 22 of Eur. Phys. J. B [4], the numbers la-
belling the first page of the cited articles in this volume,
the integer series 1 ≤ i ≤ 1024. In particular, Figure 4
(resp. 5) shows the evolution of these distributions by it-
erated dilation (resp.stretch). However, to better evaluate
the proximity to the SDL, it is useful to introduce the
following distance between distributions:

d2(pi, pj) =
s=9∑
s=1

[pi(s) − pj(s)]2. (47)

Figure 6 then reports the evolution of the distance of the
above distributions to the SDL by dilation and stretch.

Attraction to the SDL by iterative stretch is clearly
evidenced on the data sets made by the index of the first
page of cited papers (Fig. 6b) and by the integer series
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(a) (b)

(c)

Fig. 5. Sketch of the effects of iterated stretches on distributions. Data correspond to: (a) the measurements reported in the
Vol. 22 of Eur. Phys. J. B [4]. (b) the index of the first page of the cited articles in this volume. (c) the integer series: 1 ≤ i ≤ 1024.

(a) (b)

(c)

Fig. 6. Distance of distributions to the SDL distribution as defined in (47). Distributions are changed by iterative dilations or
stretch. Data correspond to: (a) the measurements reported in the Vol. 22 of Eur. Phys. J. B [4]. (b) the index of the first page
of the cited articles in this volume. (c) the integer series: 1 ≤ i ≤ 1024.
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from 1 to 1024 (Fig. 6c). It si more hardly seen on data
referring to measurements (Fig. 6a), especially because of
an anomalously large deviation at the fourth iteration.
Its origin may be traced back to the large variations of
the initial distribution from digit to digit (Fig. 4a), and
especially to the large fluctuation displayed on the fifth
digit. That fluctuation propagates from digit to digit on
successive distributions, despite the smoothing effect of
stretching. However, altogether these evolutions corrobo-
rate the attraction of distributions by stretching when the
successive digit distributions of the same initial data set
are considered.

By comparison, no clear tendency emerge for the evo-
lution of distributions with iterated dilations: the distance
to the SDL slightly decreases when data correspond to
measurements (Fig. 6a), increases after an initial fall when
data are made by the index of the first pages of the ref-
erences (Fig. 6b), and slightly increases except for a large
initial jump (Fig. 6c) on the data set made by positive
integers up to 1024. Altogether, these behaviours corrob-
orate the absence of attraction of dilation when the suc-
cessive digit distributions of the same initial data set are
considered.

4.2.4 Convergence by merge

Consider a set of distributions represented by the set of
p.d.f. πi, i = 1, .., n and the distribution that results from
their merging. We seek to determine the conditions for
which the merged distribution may be closer to the SDL
than any of its components.

We first notice that merging can actually give a distri-
bution farther from the SDL than some of its components.
In particular, merging the SDL with a non-SDL distribu-
tion of course cannot yield the SDL. Some conditions have
thus actually to be achieved to make merging a convergent
process towards the SDL.

To evaluate the convergence or the divergence to the
SDL, we use the criterion (42) of identification of the p.d.f.
of the SDL: d/dx(xπs) = 0. It yields us to introduce a
relevant distance D(πi, πj) between distributions:

D(πi, πj)2 =
∫ b

a

[
d(xπi)

dx
− d(xπj)

dx

]2

dx. (48)

This distance follows from a scalar product P (πi, πj) be-
tween distributions:

P (πi, πj) =
∫ b

a

d(xπi)
dx

d(xπj)
dx

dx (49)

following which:

D(πi, πj)2 = P (πi − πj , πi − πj)

= D(πi, πs)2+D(πj , πs)2−2P (πi, πj). (50)

This scalar product measures the correlation between dis-
tributions regarding characteristic scales. In particular,
the domains where d(xπk)/dx = 0, k = i, j, involve no

characteristic scale, as the SDL; those where d(xπk)/dx �=
0, k = i, j, include characteristic scales that can inter-
act positively or negatively depending on whether these
derivatives have the same sign or a different sign. The
product P then indicates whether, in average, merging the
two distributions πi, πj , makes them reinforce (P > 0) or
weaken (P < 0) their characteristic scales.

In Section 2.1, we made the guess that merging two
distributions yields closer to the SDL if this comes out re-
ducing the importance of their own features. In agreement
with this guess, we shall consider distributions having neg-
ative or, at most, vanishing mean correlation: P ≤ 0. Our
problem now reduces to determining the additional crite-
rion required to make the distance to the SDL decrease
by merging.

To address this issue, we restrict ourselves to a pair of
distributions, π1, π2. Merging them yields a distribution
with a p.d.f π satisfying:

π = γπ1 + (1 − γ)π2 (51)

where π1, π2 denote the p.d.f. of the initial distributions
and γ, 0 < γ < 1, a constant that depends on the number
of data of each distribution. Merging yields a distribution
closer to that of the SDL, πs, if:

D(π, πs) < Inf [D(π1, πs), D(π2, πs)]. (52)

Let us consider for simplicity that the second distribution
is closer to the SDL than the first: D(π2, πs) < D(π1, πs).
As d(xπs)/dx = 0, the criterion (52) simply reads:

∫ b

a

[
d(xπ)

dx

]2

−
[
d(xπ2)

dx

]2

dx < 0 (53)

or, equivalently:

γ

∫ b

a

[
d(xπ1)

dx

]2

+ (γ − 2)
∫ b

a

[
d(xπ2)

dx

]2

+ 2(1 − γ)
∫ b

a

d(xπ2)
dx

d(xπ1)
dx

< 0. (54)

For P ≤ 0, criterion (54) is satisfied if:

γ <
2D2(π2, πs)

D2(π1, πs) + D2(π2, πs)
. (55)

For an equal merging, i.e. γ = 1/2, it is in particular valid
provided that D2(π1, πs) < 3D2(π2, πs). This loose con-
dition shows that merging can actually decrease the dis-
tance to the SDL in many instances. In addition, criterion
(54) shows that convergence may also be achieved even for
weakly correlated distributions, i.e. for small negative P .

When criterion (52) is satisfied on an iterated merging
of distributions, the distance of the resulting distribution
to the SDL is smaller than the distance of any of the distri-
butions that compose it. This means that merging favors
convergence towards the SDL.
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4.2.5 Convergence by projection in the digit space

Given a conditional probability p of occurrence of data,
the corresponding digit distribution (35) may be written:

P (s | 10−N , 10N) =
N−1∑
n=1

D10−1 [p]n(s, s + 1 | 1, 10)

p(10n, 10n+1 | 10−N , 10N). (56)

Relation (56) shows that the digit law results from a merge
of dilated sub-parts of the initial data distribution. In the
case where the scale ratio 10 has no relevant meaning for
the data set, the different sub-parts, once dilated to all lay
in the range [1, 10[, may be uncorrelated enough to sat-
isfy the convergence by merge to the SDL (criterion (52)).
Then, the significant digit distribution will be closer to
the logarithmic distribution for the whole data than it is
in average in the different decades.

Notice that this property does not preclude the effect
of dilation or stretch on a data distribution. In particular,
whereas dilation makes distribution converges towards the
SDL in any fixed decade (Sect. 4.2.1), it has no implication
on the convergence towards the SDL on the whole data set
(Sect. 4.2.2). The reason for this is that, whereas conver-
gence towards the SDL is in order in the initial decades
covered by the data set, new decades that increase the
overall distance to the SDL arise due to data dilation.
The conclusion of Section 4.2.2 is then that both effects
tend to balance one the other, up to finite size and aliasing
effects.

5 Scale-invariance versus scale-ratio
invariance

The preceding quest for the significant digit law by sym-
metry arguments has revealed the definite roles of two
scale symmetries: one famous, the scale-invariance, and
another somewhat similar but far more ignored, the scale-
ratio invariance. Both of them were actually required to
select the SDL by covariance, and thus to identify the spe-
cific symmetries that characterize this special distribution.

Beyond the present topic, one may guess that these
scale symmetries — including the scale-ratio invariance
— could play an important role in our understanding of a
number of other issues in which the concepts of scale and
scale ratios are relevant [20,21]. In this spirit, the present
study may be viewed as a canonical framework, simple
enough to identify the implications of statistical symme-
tries regarding scales or scale-ratios, and rich enough to
exemplify the analogies and the differences between these
two concepts. Below, we develop that second aspect by ad-
dressing the concepts of characteristic scales or scale-ratios
and the structure of the sets of symmetric distributions.

5.1 Characteristic scale

A characteristic scale is a scale that is singled out by the
phenomenon under study, so that it may be unambigu-
ously identified from it.

5.1.1 SI distribution: no characteristic scale

The property underlying the concept of scale-invariance is
the absence of characteristic scale. Following it, any scale
may equivalently play the role of any other in the repre-
sentation of the system. This provides an operational im-
plication of scale-invariance which may be used to identify
it. This may be exemplified in relations (17, 18) by intro-
ducing an explicit normalisation scale Xs playing the role
of the standard used to get data. This turns out interpret-
ing data, e.g. xi, as the ratio of a given quantity Xi by
the standard Xs used to measure it: xi = Xi/Xs. Here Xs

a priori stands as a characteristic scale to which the re-
sulting distribution will depend. However, for the expres-
sions (17, 18) of scale-invariant distributions, it surpris-
ingly happens that Xs eventually disappears from them.
This confirms that its definite value is irrelevant here: SI
distributions rely on no characteristic scale.

5.1.2 SRI distributions: a single characteristic scale

In SRI distributions (32, 33), the preceding role of the
normalization scale Xs is undergone by the explicit scale
xc. Except for the specific case of the SDL (f = 1), the
definite value of xc then corresponds to an actual parame-
ter of the distributions. In particular, the fact that a given
SRI distribution enables to determine xc unambiguously
shows that this scale stands as a characteristic scale of its
statistics.

Direct inspection of SRI distributions does not reveal
any other characteristic scale than xc. While this would
not suffice for concluding that xc is the only characteris-
tic scale involved in SRI distributions, it actually appears
that this property is true. This may be understood by the
following reasoning.

If there was no characteristic scale, scale-invariance
would be fulfilled. Distributions would then follow rela-
tions (17, 18) in contrast with relations (32, 33). Some
characteristic scales are thus in order. However, if two
of us xc,1 xc,2 were to exist, their ratio xc,1/xc,2 would
be also a characteristic of the distribution: the statistics
would then not satisfy scale-ratio invariance. Hence, one
characteristic scale and one only is involved in SRI dis-
tributions (32, 33). This is confirmed in Appendix A.2 by
another method.

5.2 Sets of symmetric distributions

We denote SI and SRI the spaces of symmetric distribu-
tions with respect to scale-invariance and scale-ratio in-
variance. They correspond to the distributions (17, 18)
and (32, 33):

SI = {pe(., .; ., .) ; e ∈ R}
SRI = {pf,xc(., .; ., .); f ∈ R ; xc ∈ R}.

To emphasize the respective character of the two scale
symmetries, we address below their effects on these sets.
This leads us to compare the respective properties of these
sets and their link with the SDL.
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Fig. 7. Sketch of the sets of symmetric distributions SI, SRI,
and of the orbits of their elements by dilation Dλ and stretch
Sxf ,ν . Both sets are invariant by dilation and stretch. How-
ever, the elements of SI, the scale-invariant distributions, are
invariant by any Dλ. Those of SRI, the scale-ratio invariant,
are invariant by any stretch Sxc,ν where xc labels the charac-
teristic scale of these distributions. Notice that none of these
sets is included in the other and that their intersection is re-
duced to the SDL.

5.2.1 Orbits by dilation

Applying a dilation Dλ to the distributions (17, 18, 32,
33) yields the following changes:

pe(xi, xj ; a, b) → pe(xi, xj ; a, b)
pf,xc(xi, xj ; a, b) → pf,xc/λ(xi, xj ; a, b).

This reveals the following properties that are displayed in
Figure 7:

1. dilations preserve each SI distribution pe;
2. dilations modify the SRI distributions pf,xc ;
3. dilations change one SRI distribution for another;
4. dilations conserve the exponents e or f of SI or SRI

distributions;
5. dilations change the characteristic scales of SRI distri-

butions: xc → xc/λ.

The first property simply follows from scale-invariance.
The second property shows an actual difference between
SI and SRI which emphasizes the different natures of these
scale symmetries. The third property shows that, although
the set SRI is not invariant by dilation, it is globally
conserved: Dλ(SRI) = SRI . This corroborates the fact
that dilations do not introduce by themselves additional
characteristic scale and thus any characteristic scale-ratio
in distributions. This is confirmed by the fourth prop-
erty which shows that exponents stand as invariants of
the orbits generated by dilations. The changes undergone
along an orbit of a SRI distribution is then stated by the
last property: they affect the characteristic scale xc. This
stresses the fact that dilations actually change scales and,
therefore, characteristic scales.

5.2.2 Orbits by stretch

Applying a stretch Sxf ,ν to the distributions (17, 18, 32,
33) yields the following changes:

pe(xi, xj ; a, b) → pνe(xi, xj ; a, b)
pf,xc(xi, xj ; a, b) → pf,S−1

xf ,ν(xc)
(xi, xj ; a, b).

This reveals the following properties that are displayed in
Figure 7:

1. stretch modifies each SI distribution pe by changing it
into another SI distribution;

2. stretch modifies each SRI distribution by changing it
into another SRI distribution;

3. stretch changes the exponent of SI distributions: e →
νe;

4. stretch conserves the exponent of SRI distributions
f → f but changes their characteristic scale: xc →
S−1

xf ,ν(xc).

The first property shows that, although the set SI is not
invariant by stretch, it is globally conserved: Sxf ,ν(SI) =
SI. This corroborates the fact that stretch does not intro-
duce neither characteristic scale nor characteristic scale-
ratio by itself. This is confirmed by the second property
which shows that the set SRI, although not invariant by
stretch, is also globally conserved: Sxf ,ν(SRI) = SRI .
The third property indicates that a stretch changes the
scale ratios, as expected from its definition. The last prop-
erty shows that exponents f refer to a property common
to different scale ratios. It also reveals the covariance prop-
erty of SRI distributions: for a given change of scale ra-
tio, i.e. for a given ν, SRI distributions can be invariant
by the corresponding stretching transformation provided
that their characteristic scale xc stands as the fixed point
xf of this transformation: xf = xc.

5.2.3 Structures

Both sets of SI or SRI distributions are globally stable by
dilation or stretch, but some of their distributions actually
change under these transformations.

That no SI distribution change by dilation follows from
their absence of characteristic scale. However, the fact that
their exponent changes by stretch except when it is zero,
e = 0, reveals that they involve a characteristic scale-ratio,
except for the SDL. In an analogous way, the modifica-
tion of SRI distributions by dilation, except for f = 1,
shows that they involve a characteristic scale, except for
the SDL. On the other hand, the fact that scale ratios
can be changed (i.e. ν �= 1) while preserving SRI distri-
bution (i.e. by Sxc,ν(.)) means that they involve no char-
acteristic scale ratio. Their change under other stretch-
ing transformations, i.e. Sxf ,ν(xc) �= xc, can thus be at-
tributed to the additional dilation D(xf /xc)1−ν involved in
these transformations in comparison to the covariant one:
Sxf ,ν(.) = D(xf /xc)1−ν ◦ Sxc,ν(.).

Following this analysis, the set SI of SI distributions
is made of distributions involving no characteristic scale
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but a single characteristic scale-ratio, except for the SDL
which involves none. Only the SDL is thus scale-ratio in-
variant in the SI set.

Similarly, the set SRI of SRI distributions is made
of distributions involving no characteristic scale-ratio but
a single characteristic scale, except for the SDL which
involves none. Only the SDL is thus scale invariant in the
SRI set.

The two scale symmetries are thus independent one
of the other, neither of them being a consequence of the
other:

SI �= SI ∩ SRI; SRI �= SRI ∩ SI (57)

the SDL being the only distribution that satisfies both of
them:

SI ∩ SRI = {SDL}. (58)

Interestingly, as shown in Section 4.2, this common distri-
bution appears as an attractor of other distributions by
dilation, stretch, and merging.

6 Conclusion

Since more than a century, an ubiquitous logarithmic
distribution of data applying to many various numerical
data sets has been discovered by Newcomb [1]: the “sig-
nificant digit law”. About fifty years later, it was sup-
ported by a wide investigation performed by Bendford on
many everyday-life numerical data sets [2]. Since then,
this observation has been used to detect frauds in busi-
ness data [7,9] or to improve computer designs [5]. Yet,
the reasons of its widespread occurrence has still remain
the field of intense statistical and mathematical investiga-
tion [3,5,6,10–15,18,22].

We have shown here that the SDL results from two
similar, albeit different, scale symmetries: the scale invari-
ance and the scale-ratio invariance. For this, the relevance
of these symmetries to large common data sets has first
been legitimized from a phenomenological point of view.
Then the distributions symmetric by change of scales or of
scale-ratios have been determined from a criterion of co-
variance. The only distribution satisfying both symmetries
has been found to be the SDL.

This specific distribution has been shown to possibly
attract other distributions by dilation, stretch or merge of
uncorrelated enough data. This is in particular the case
when data are sampled in a fixed window depending on
the local properties of the p.d.f of initial data. When the
whole data sets are analyzed in an unbounded window,
this remains true for stretch and merge but gets wrong
for dilations.

Altogether, these results explain the ubiquity of this
distribution and offer a deep insight into its nature. This
can be used to clarify the situations in which the SDL
might be relevant (e.g. finance, digital analysis) by investi-
gating whether scale-invariance and scale-ratio invariance
make sense for the corresponding systems or by determin-
ing the reasons of its possible failures (e.g. psychological
barriers [22], fraud [6]).

Beyond this characterization of the SDL, the present
analyses draw attention on a scale symmetry which is
mostly ignored but which could be of paramount impor-
tance: the scale-ratio invariance. In particular, it has been
found here as essential as the well-known scale-invariance
for clarifying the nature of the SDL. Interestingly, it has
proved to be more appropriate than the scale-invariance to
investigate the differences between the concepts of invari-
ance and of covariance. In view of the paramount gener-
ality of symmetries, we may guess that this invariance by
change of scale-ratio might play a similar important role
in other topics where multiple scales are involved [20,21].
Then, the present analyses would provide a useful guide
for implementing its implications.

Appendix A

A.1 Selection of the SDL from the implications
of statistical symmetries on the digit distribution

We consider a base b, a set of data {d} and the distribution
D(x, y, b), (x, y) ∈ [1, b[2, which expresses the probability
of finding, in the base b, the mantissa σ = db−n, σ ∈ [1, b[,
n ∈ Z, of data d in the range [x, y[.

We first assume that this statistics is covariant by di-
lation of data d → d′ = λd, i.e. is scale-invariant, and we
seek to identify the corresponding distributions. Following
the analysis of Section 3.1.1, it is worth restricting the set
of data to a bounded range BN = [b−N , bN [, N > 0, in
order to avoid the possibility of breaking of the concept of
probability (see App. A.5). This precaution, which makes
difference with the analysis of Pinckham [11], will prove
to be essential for recovering all the sought distributions.
Taking memory of it, we shall keep an explicit label for
the data range BN in the digit distribution by denoting
this distribution D(x, y, b, N).

We first notice that, for data belonging to the bounded
range BN and involving the most significant part σ of their
mantissa in the sub-range [x, y[, 1 < x, y < b, there exists
a range of dilation factors λ ∈ [1, Λ] small enough to avoid
a jump of σ from the vicinity of b to 1. Then, dilation of
data implies the same dilation of the most significant part
of their mantissa, i.e.:

d → d′ = λd =⇒ σ → σ′ = λσ. (A.1)

We shall restrict the following analysis to this case.
Let us denote H(x, y, b) the histograms of the most

significant parts of data mantissae in the range [x, y[ in
the base b. We first notice that, by definition, the his-
tograms of the initial distribution, H , and of the dilated
distribution, H ′, are related one to the other by:

H ′(x′, y′, b) = H(x, y, b). (A.2)

However, when statistics are scale-invariant, the reparti-
tion of the most significant parts of data mantissae in a
range [x, y[ should not be able to reveal whether a scale
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dilation has been applied to data. This means that their
histograms should actually be the same:

H ′(x′, y′, b) = H(x′, y′, b) (A.3)

so that:

∀(x, y), 1 < x , y < b ; ∃Λ ; ∀λ ∈ [1, Λ]
H(λx, λy, b) = H(x, y, b). (A.4)

An essential point to realize, however, is that, because
of dilation, the data contained in the fixed data range
BN before and after dilation are not the same, so that
their number may actually differ. In particular, those con-
tained in [bN/λ, bN [ (resp. [b−N/λ, b−N [) have been ex-
pelled from (resp. included in) BN . For this reason, the
relationship (A.4) between scale-invariant histograms only
yields a proportionality between distributions up to an un-
known prefactor µ(λ) corresponding to the relative change
of the number of data:

∀(x, y), 1 < x, y < b; ∃Λ; ∀λ ∈ [1, Λ] ; ∃µ(λ);
D(λx, λy, b, N) = µ (λ)D(x, y, b, N). (A.5)

Expressing, as in section 3.1.3, the digit distribution with
a mono-variate function g(.):

D(x, y, b, N) =
g(y) − g(x)
g(b) − g(1)

(A.6)

one obtains, from (A.5), the criterion (11). The solutions
are thus not only the SDL but also the distributions (17).
The existence of scale-invariant distributions other than
the SDL traces back to the prefactor µ which actually
differs from unity except for the SDL. This explains that
overlooking it restricts the selection to the sole SDL [3,11].

We now assume that statistics of the most significant
part of data mantissa are covariant by change of scale
ratio, i.e. by transformations Sxf ,ν(.). Notice that data
d = σbn are transformed into d′ = Sxf ,ν(σ)bνn = σ′bn′

with σ′ ∈ [1, b[, so that the link between σ and σ′ depends
on n, i.e. on the magnitude of data d. To avoid handling
this parametrization, we restrict ourselves to d = σb, σ
belonging to the sub-range [x, y[⊂ [1, b[. Then, for ν and
xf close enough to 1, the transformed value of σ keeps in
between 1 and b, so that σ′ = xf (σ/xf )νbν−1 (notice that
the latter condition, xf close enough to 1, is actually su-
perfluous since the values of xf (ν) that ensure invariance
of distributions may be expected to be continuous with
respect to ν and to satisfy xf (1) = 1). Then, the same
reasoning as for scale-invariance shows us that:

∀(x, y), 1 < x , y < b; ∃D ; ∀ν ∈ [1, D] ; ∃xf , ∃µ(λ);
D(Sxf ,ν(x), Sxf ,ν(y), b, N) = µ (λ)D(x, y, b, N). (A.7)

Using invariance by dilation and considering log-variables
(24), criterion (A.7) turns out to be equivalent to the scale-
covariant criterion (26).

Therefore, as for distributions of data, the scale-
invariance and the scale-ratio invariance of digit distri-
butions altogether select the SDL.

A.2 SRI and characteristic scales

Consider a SRI distribution. By definition, it is invariant
by stretching transformations Sxf ,ν(.) for any ν and suit-
ably chosen xf (ν). In particular, it is also invariant by the
combination:

S−1
xf2,ν2

(.)◦S−1
xf1,ν1

(.)◦Sxf2,ν2(.)◦Sxf1,ν1(.) = Dλ(.) (A.8)

which is a power law with zero exponent, i.e. a dilation
Dλ(.). Its dilation factor λ:

λ =
(

xf2

xf1

)(1−1/ν1)(1−1/ν2)

(A.9)

differs from unity as soon as the characteristic scales
(xf1, xf2) differ, xf1 �= xf2, and both the exponents ν1,
ν2 are different than unity.

Assume now that there exists different values of the
characteristic scales xf (ν) for this SRI distribution. As
distribution functions are continuous, the function xf (.)
must be continuous too. The values of λ generated in
(A.9) by varying the exponents ν1, ν2, would then extend
continuously on a range including, but not restricted to,
unity. However, by combination of dilations, all dilation
factors could then be recovered. Accordingly, the SRI dis-
tributions would be preserved by any dilation: it would be
scale-invariant.

Requiring more than one characteristic scale for
SRI distributions thus implies that they involve none!
This paradoxical conclusion shows that SRI distribu-
tions can only involve a single characteristic scale xc:
∃!xc; ∀ν, xf (ν) = xc.

A.3 Short derivation of scale-ratio invariant solutions

Following Appendix A.2, there exists a single characteris-
tic scale xc for scale-covariant distributions. This implies
that xc must be the fixed point of the transformations
Sxf ,ν(.) expressing the covariance, otherwise each of them
would generate an infinite series of characteristic scales:
Sn

xf ,ν(xc). This in particular means that all the transfor-
mations yielding covariance have the same fixed point, xc:
∀ν, xf (ν) = xc.

Apply now the dilation Dx−1
c

(.). It changes probabili-
ties p in p → p̂ = p ◦ Dx−1

c
and brings the characteristic

scale xc to unity: xc → 1. As the characteristic scale of
p̂ is unity, the affine transformation AM,ν(.) (22) then re-
duces to a dilation. The distributions covariant by AM,ν(.)
(25) then simply correspond to scale-invariant distribu-
tions (17, 18). Going back to the distributions p by using
log-variables (24), one then recovers the scale-ratio invari-
ant solutions (32, 33).

A.4 Formulation of covariances with mantissa and base

For fixed ξ and ρ, let us write number x in logarithmic
representation: x = ξρx̃. This yields a bijection between x
and x̃.
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Dilation Dλ(.) then corresponds to a dilation of ξ at
fixed ρ and x̃:

Dλ : (ξ, ρ, x̃) → (λξ, ρ, x̃). (A.10)

Power law change Sµ,ν(.) reduces to a stretch of ρ and a
power law change of ξ at fixed x̃:

Sxf ,ν : (ξ, ρ, x̃) → (Sxf ,ν(ξ), ρν , x̃). (A.11)

In this framework, the covariance of SI distribution or SRI
distribution can be simply checked:

– SI distributions pe(., . | ., .) (17) read:

pe(xi, xj ; a, b) =
αx̃j − αx̃i

αx̃b − αx̃a
(A.12)

with α = ρe. The absence of ξ in this expression shows
the invariance by change of scale units ξ, i.e. scale-
invariance. Here covariance by dilation of pe actually
reduces to its invariance by dilation and thus to the
absence of mantissa ξ.

– SRI distributions pf,xc(., . | ., .) (32) read:

pf,xc(xi, xj | a, b) =
(A + x̃j)f − (A + x̃i)f

(A + x̃b)f − (A + x̃a)f
(A.13)

with A = ln[ξ/xc]/ ln(ρ).
Covariance by power law change Sxf ,ν(.) thus reduces
to the invariance, for any ν, of parameter A by at least
one Sxf ,ν(.). This is indeed ensured when the scale
units ξ is taken as the characteristic scale xc, since
then A = 0 whatever ρ. Power law changes Sξ,ν(.) then
gives covariance since ξ does not change and, therefore,
A = 0 neither.
More generally, for ξ �= xc, invariance of A for a power
law change Sxf ,ν(.) requires that ξ/xc gets stretched
as ρ: ρ → ρν and ξ/xc → ξ′/xc = (ξ/xc)ν , i.e.
ξ′ = Sxc,ν(ξ). As by definition ξ′ = Sxf ,ν(ξ), this
means that covariance can only be obtained for power
law changes Sxf ,ν(.) involving xc as their fixed point:
xf = xc.

A.5 Breaking of probability for the SDL

As feared in Section 3.1.1, the concept of probability
breaks down when no restriction on the set of picked-up
numbers is imposed, i.e. when either a = 0 or b = ∞. This
arises from either a vanishing or a divergence of probabil-
ity p(xi, xj | a, b) for all conditional intervals [xi, xj [. In
particular:

– Scale invariant distributions

∀(xi, xj) , b → ∞ ⇒ pe(xi, xj | a, b) → 0
a → 0 ⇒ p0(xi, xj | a, b) → 0.

For scale invariant distributions, the concept of prob-
ability breaks down on any infinite set [a,∞[ and, for
the distribution which is also scale-ratio invariant, on
any finite set [0, b[ starting at zero.

– Scale-ratio invariant distributions

∀(xi, xj) , b → ∞ ⇒ pe(xi, xj | a, b) → 0
a → 0 ⇒ pe(xi, xj | a, b) → 0.

For scale-ratio invariant distributions, the concept of
probability breaks down on any infinite set [a,∞[ and
on any finite set [0, b[ starting at zero.

This shows that the significant digit law is meaningful only
if considered on sets involving finite non-zero bounds.

A.6 Solutions of the functional criterion
for scale-invariance

We recall the functional criterion (11) for scale-invariance:

∀λ, ∃h(.), ∃k(.);
∀x, g(λx) = h(λ) g(x) + k(λ)

where λ denotes the scale dilation factor.
Transitivity between dilations of scale factor λ1 and λ2

yields:

g(λ1λ2x) = h(λ1) g(λ2x) + k(λ1)
= h(λ1)h(λ2)g(x) + h(λ1)k(λ2) + k(λ1)
= h(λ2)h(λ1)g(x) + h(λ2)k(λ1) + k(λ2)
= h(λ1λ2)g(x) + k(λ1λ2)

so that:

h(λ1λ2) = h(λ1)h(λ2) (A.14)
k(λ1λ2) = h(λ1)k(λ2) + k(λ1) (A.15)

= h(λ2)k(λ1) + k(λ2).

Relation (A.14) shows that function H(.) = ln[h(.)] is ad-
ditive with respect to variable Λ = ln(λ):

H(Λ1 + Λ2) = H(Λ1) + H(Λ2). (A.16)

This implies the linearity of H(.) on the rational num-
bers: ∀r ∈ Q, ∀x, H(rx) = rH(x). This property shows
that H(.) is either continuous everywhere or discontinuous
everywhere. Rejecting the pathological case of a disconti-
nuity for all scale factors, we shall consider a linear H(.).
Back to function h(.), this gives:

∃e; ∀x, h(x) = xe h(1) (A.17)

and, according to (A.14), h(1) = 1 for non-zero h(.).
Let us distinguish two cases:

– e = 0
For e = 0, function h(.) is constant and relation (A.15)
reads:

k(λ1λ2) = k(λ1) + k(λ2). (A.18)

As for function H(.) (A.16), this relation implies that
k(.) is linear in variable Λ = ln(λ) provided it is not
everywhere discontinuous:

∃C; ∀λ; k(λ) = C ln(λ). (A.19)
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Altogether, relations (??) (A.17) (A.19) then yield:

∃C; ∀x, ∀λ, g(λx) = g(x) + C ln(|λ|)
∃(α, β); ∀x, g(x) = α ln(|x|) + β. (A.20)

This corresponds to relation (15).
– e �= 0

For e �= 0, relation (A.15) yields:

k(λ2)(1 − λe
1) = k(λ1)(1 − λe

2) (A.21)
∃C ; k(λ1) = C (1 − λe

1) (A.22)

so that, altogether, relations (??, A.17, A.21) give:

∃C ; ∀x , ∀λ , g(λx) − C = λe(g(x) − C)
∃(α, β) ; ∀x , g(x) = αxe + β. (A.23)

This corresponds to relation (16).

A.7 Solutions of the functional criterion
for scale-ratio invariance

We recall the functional criterion (26) for scale-ratio in-
variance:

∀ν, ∃M(.), ∃H(.), ∃K(.) ;
∀X, G[νX + M(ν)] = H(ν) G(X) + K(ν) (A.24)

where ν is the stretch factor of scale-ratios induced by
power law transformations Sxf ,ν(.).

Transitivity between stretching of scale-ratio yields:

G[ν1ν2X + M(ν1ν2)]
=H(ν1ν2) G(X) + K(ν1ν2)

=H(ν1) G[ν2X +
M(ν1ν2) − M(ν1)

ν1
] + K(ν1)

=H(ν1) H(ν2) G

[
X +

M(ν1ν2) − M(ν1) − ν1M(ν2)
ν1ν2

]

+ H(ν1) K(ν2) + K(ν1)

so that:

∃(A, B, C); ∀X , G(X) = AG(X + B) + C (A.25)

with

A =
H(ν1)H(ν2)

H(ν1ν2)

B =
M(ν1ν2) − M(ν1) − ν1M(ν2)

ν1ν2

C =
H(ν1)K(ν2) + K(ν1) − K(ν1ν2)

H(ν1ν2)
.

Let us assume that A is not unity. The functional relation
(A.25) then yields with exp(aB) = A, b = C/(A − 1) and
G̃(X) = exp(aX)[G(X) + b], the relationship:

G̃(X + B) = G̃(X) (A.26)

Denoting PB(X) this B-periodic function, we obtain:

∃(a, b, B), a = ln(A)/B, b = C/(A − 1);
G(X) = exp(−aX) PB(X) − b.

Then criterion (A.24) reads:

∀ν, ∃(a, b, B, M, H, K); ∀X,

exp(−aνX) exp(−aM) PB(νX + M) − b

=H(ν)exp(−aX)PB(X)−H(ν)b+K(ν). (A.27)

This can only be achieved for a = 0, i.e. A = 1, in contra-
diction with our assumption.

The ratio A is thus equal to unity: A = 1. Let us now
assume that B is not zero. Then relation (A.25) yields
with G̃(X) = G(X) + aX and a = C/B the relationship:
G̃(X) = G̃(X + B) = PB(X). where PB(.) denotes a B-
periodic function. This gives G(X) = PB(X)−aX which,
together with criterion (A.24), implies:

∀ν, ∃(a, B, M, H, K); ∀X

PB(νX + M) = HPB(X) + a(ν − H)X
+ aM + K. (A.28)

This can only be achieved for a = 0, i.e. C = 0, and B = 0.
The later results follows from the fact that PB(νX+M) is
B/ν-periodic in X , so that the function PB(.) is actually
B/νp-periodic, p ∈ Z. Being assumed to be continuous, it
can then only be a constant: B = 0, PB(.) = K.

Let us compute B by applying the scale transforma-
tions indexed 1 and 2 in either order. Commutativity of
this operation combined with the fact that in either case
B = 0, yields:

∀(ν1, ν2), M(ν1)(1 − ν2) = M(ν2)(1 − ν1) (A.29)

and:
∀ν, ∃D; M(ν) = D(1 − ν). (A.30)

Defining Y = X −D, Ĝ(Y ) = G(X), relation (A.30) com-
bined with criterion (A.24) yields:

∀ν, ∃H(.), ∃K(.) ;

∀Y, Ĝ(νY ) = H(ν) Ĝ(Y ) + K(ν).

This is actually similar to criterion (??) whose solutions
are given in (A.20, A.23).

Back to function G(.) and variable x with X = ln(|x|),
one then obtains, with D = ln(|xf |):

∃(α, β, f, xf ) ;

f �= 0 , g(x) = α (ln(|x/xf |)f + β

f = 0 , g(x)=α ln(| ln(|x/xf |)|)+β. (A.31)

This corresponds to relations (30, 31).
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